

Welcome to Puzzle Hunt CMU’s Server documentation!

If you’re here as a user, start with the “How to Create a Hunt” and “How to Run
a Hunt” sections. If you are here as a developer, start with the “Setup” and
“Basics” sections.

	1. How to Create a Hunt
	1.1. Prepare the Hunt Content

	1.2. Create the Hunt Object

	1.3. Create Puzzle Objects

	1.4. Create Prepuzzle Objects

	1.5. Hunt Creation Wrapup

	2. How to Run a Hunt
	2.1. Staff Pages

	2.2. Preparing for the Hunt

	2.3. Running the Hunt

	2.4. Random Info and Common Issues

	3. Setup
	3.1. Basic Setup Instructions

	3.2. Extra Setup Instructions

	4. Basics
	4.1. Design

	4.2. Dynamic Content

	4.3. Static Content

	4.4. Database

	5. Models

	6. Views
	6.1. Hunt Views

	6.2. Info Views

	6.3. Staff Views

	6.4. Auth Views

Changelog Here

Contribute

Source Code: http://www.github.com/dlareau/puzzlehunt_server

Issue Tracker: http://www.github.com/dlareau/puzzlehunt_server/issues

If you are having issues, please let us know.
Email dlareau@cmu.edu

The project is licensed under the MIT license.

1. How to Create a Hunt

Table of Contents

	How to Create a Hunt

	Prepare the Hunt Content

	Create the Hunt Object

	Editing the Hunt Template

	Basic Information

	Inheriting the Base Template

	Starter Example

	Template Wrap Up

	Hint Unlock Plans

	Hunt object creation wrap up

	Create Puzzle Objects

	The Basics

	Attributes

	Content

	Unlocking the Puzzle

	Auto-Response Objects

	Puzzle Wrapup

	Create Prepuzzle Objects

	Prepuzzle Templating

	Hunt Creation Wrapup

This is a guide describing how to set up a new puzzlehunt on the Puzzle Hunt CMU
server. This guide assumes that the server itself is already set up and that you
already have an account on the server with both “Staff” and “Superuser”
permissions.

1.1. Prepare the Hunt Content

Before anything is done on the server you should decide on some basic details
about the hunt. You can always come back and edit these details later if they
change. Some things to think about:

	Hunt Name

	Hunt Date

	Hunt duration

	Hunt starting location

	Max team size

	Number of puzzles in the hunt

	Unlocking structure for the puzzles in the hunt

Those first 5 details are especially important because they will be visible on
the front page as soon as you establish this hunt as the current hunt.

1.2. Create the Hunt Object

You aren’t going to get very far without a hunt object to attach all of this
data to, so sign in with your staff account and navigate over to
{server URL}/staff. You should be greeted with a page like the one below:

[image: _images/main_1.png]
Click on the “Hunts” label either in the center or on the left-hand sidebar.

Once on the hunts page, click the blue “+” button in the upper right-hand corner
to create a new hunt object. The page should now look like the below image:

[image: _images/hunt_1.png]
Start by filling out everything in the “Basic Info” section.

Caution

Checking the “Is current hunt” box will make this hunt the hunt
visible on the front page of the website. Only do so if all of the public
facing details (everything in the “Basic Info” section) are correct.

Important

There are two start and end dates.

“Start Date” and “End date” are for internal use and will control things
like when the puzzles become available to the players, when teams start
gaining points for point based hunts, and when the hunt will automatically
stop accepting answers.

“Display start date” and “Display end date” are the dates/times displayed on
the front page of the website and control nothing.

In general, set the display dates for when people should arrive and leave and
set the actual dates for when teams should be actively solving puzzles.

Next, fill in the two fields in the “Hunt Behavior” section, the help texts
should be pretty self explanatory.

The next section covers the “Resources/Template” section. If you don’t want to
deal with making the hunt template right now just type anything you want in the
template field and then skip to “Hint Unlock Plans” below.

1.2.1. Editing the Hunt Template

This is where we give the hunt its look and feel. Before this point, navigating
to the hunt page would just give you a blank page.

1.2.1.1. Basic Information

Everything typed into the “Template” form on the hunt editing page will be run
through Django’s templating engine and rendered as HTML on the hunt main page.

You can find documentation about Django’s template language here:
https://docs.djangoproject.com/en/2.2/ref/templates/language/.
I’d recommend reading the “Variables”, “Filters”, and “Tags” sections.

Speaking of variables, the following variables will be passed to the renderer
for use in the template:

	hunt

	The current hunt object

	team

	The team object for the team of the user currently visiting the page

	puzzles

	A list of puzzle objects that the team currently has unlocked, sorted
by puzzle number

	solved

	A list of puzzle objects that the team currently has solved, unsorted

Tip

You can view the fields that are available to access on each of the
team, hunt and puzzle objects in the models documentation.

Since version 3.0, in order to reduce repository clutter, it is now against
policy to commit files specific to a certain hunt to the repository. This means
that you are no longer allowed to load resource files directly onto the server.

To still allow the use of new static files in each hunt, there is now a field on
each hunt’s admin page for a resource URL. This URL should point to a publicly
accessible zip file, which contains all static media needed for the main hunt
page. The resources can be downloaded by clicking the “Resources” button next to
the appropriate hunt on the Hunt Management page. After the resources have been
downloaded, they will be accessible through the use of a special template tag.

The {% hunt static %} template tag will insert the URL to the current hunt’s
resource directory. For example, putting the text
{% hunt static %}myimage.png in the template would insert the URL to the
file myimage.png.

1.2.1.2. Inheriting the Base Template

It is recommended to start your template out with the following code:

{% extends "hunt_base.html" %}

{% block content %}
 Your content here
{% endblock content %}

The above code inherits the
hunt_base.html [https://github.com/dlareau/puzzlehunt_server/blob/master/huntserver/templates/hunt_base.html]
template, which in turns inherits the
base.html [https://github.com/dlareau/puzzlehunt_server/blob/master/huntserver/templates/base.html]
template. You don’t need to know the contents of those two files, just that they
provide the basic functionality like the site header and they define the
following blocks that you can override for additional custom behavior:

	{% block title %}

	This block controls what title is in the web browser tab. The default value
for this block is “Puzzlehunt!”

	{% block base_includes %}

	This block controls what content will be sourced/included before the standard
Bootstrap and Jquery imports. This allows you to override unwanted bootstrap
styles. The default value for this block only imports hunt_base.css.

	{% block includes %}

	This block controls what content will be sourced/included after the standard
Bootstrap and Jquery imports. This is for content that you want to use to
extend those libraries, or content that relies on those libraries.

	{% block footer %}

	This block controls what content will be inserted at the bottom of the page.
The default value is links to our social media and bridge page.

You can read more about Django template inheritance and blocks here:
https://docs.djangoproject.com/en/2.2/ref/templates/language/#template-inheritance

Warning

While you may use completely custom HTML, it is STRONGLY
RECOMMENDED that you follow the instructions below on how to inherit the base
template to get nice features like the header bar, common style sheets,
Google analytics, and graceful degradation when the hunt becomes public.

1.2.1.3. Starter Example

While you may now technically have all of the information you need, that
doesn’t mean you know what to do with it. Below is a simple example based one of
our first hunts to use this server. It will show the puzzles, display the
answer for any solved puzzles, and demonstrates how to break a hunt into two
rounds.

{% extends "hunt_base.html" %}
{% block title %}Puzzles!{% endblock title %}

{% block base_includes %}
<link rel="stylesheet" type="text/css" href="{{ STATIC_URL }}huntserver/hunt_base.css">
<style>
.puzzle-name {
 white-space: nowrap;
 overflow: hidden;
 width: 320px;
}
</style>
{% endblock base_includes %}

{% block content %}
<div class="container" >
 <div class="row" >
 <div class="content col-md-6 col-md-offset-3" id='puzzle-frame'>
 <h1 class="title">Puzzlehunt: The Musical</h1>
 <div id="puzzles">
 <table>
 <thead>
 <tr>
 <th style='width: 320px'>Puzzle Name</th>
 <th style='width: 180px'>Solution?</th>
 </tr>
 </thead>
 <tbody>
 {% for puzzle in puzzles %}
 {% if puzzle.puzzle_number == 8 %}
 </tbody>
 </table>
 <h3 class="title">- Intermission -</h3>
 <table>
 <tbody>
 <col width="320px">
 <col width="180px">
 {% endif %}
 <tr id='puzzle{{ puzzle.puzzle_number }}' class='puzzle'>
 <td>
 <p class="puzzle-name">

 {{puzzle.puzzle_name}}

 </p>
 </td>
 <td>
 {% if puzzle in solved %}
 {{ puzzle.answer|upper }}
 {% endif %}
 </td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
 </div>
 <p> Feeling stuck? Chat with us</p>
 </div>
 </div>
</div>
{% endblock content %}

1.2.1.4. Template Wrap Up

That should be enough to get you started with template writing. Don’t forget to
download resources each time you update them and save often when editing the
template as it won’t save if you close or leave the page for any reason.

Tip

You can use ctrl-s/cmd-s to save the page and continue working

1.2.2. Hint Unlock Plans

The final section of the Hunt creation page is for determining if and when hints
will automatically become available to teams. If you do not want to use
automatic hints (or hints at all) in the current hunt, simply ignore this
section. Manual hints can still be awarded from the “Hints” page under the
“Other Staff Pages” sidebar header.

If you do want to automatically award hints during the hunt, there are three
possible unlock mechanisms for hints:

	Exact Time Unlock:

	All teams will gain a single hint some amount of time into the hunt. Use the
unlock parameter field to indicate how many minutes into the hunt this hint
should be given out.

	Interval Based Unlock:

	All teams will gain a hint every X minutes for the entire duration of the
hunt. Use the unlock parameter field to indicate the number of minutes between
hints. The first hint will be given out X minutes after the start of the hunt.

	Solves Based Unlock:

	Each team will individually be given a hint when they reach a certain number
of puzzle solves. Use the unlock parameter field to indicate how many solves a
team needs to unlock this hint.

You may add as many hint unlock plans as you want, using the “Add another Hint
unlock plan” link at the bottom to add additional rows to the table. All hint
plans will trigger independently of each other.

Caution

“Exact Time Unlock” and “Interval Based Unlock” hints are both calculated
against the “Start Date” field of the hunt, making it even more important
that the start date is actually when teams will start solving puzzles and not
just when teams arrive for check in.

Danger

Changing a hint unlock plan after the hunt has started can have unexpected
results. Please take extra care to make sure that the hint plans are correct
before the hunt starts.

1.2.3. Hunt object creation wrap up

After you’ve filled in everything make sure “Is current hunt” box is
appropriately checked or unchecked and hit the blue “Save” button in the upper
right.

1.3. Create Puzzle Objects

Great, now we have a hunt template and we can view our hunt, but that’s not good
without any puzzles, so let’s add some.

Start by going to the “Puzzles” section using the side navbar and clicking the
blue “+” button in the upper right-hand corner to be brought to the puzzle
creation page.

1.3.1. The Basics

Start by choosing which hunt the puzzle will belong to and giving the puzzle a
name and an answer.

Tip

Answers are not case sensitive

Next, the puzzle must be given both a number and an ID. The number is for
ordering within the hunt, and controls the order of puzzle objects passed into
the hunt template. The ID used as a unique identifier across all puzzles is used
in the URL for the puzzle.

Note

The current trend for ID’s is to have the same 3 digit prefix for all puzzles
in a hunt and to use the puzzle’s number as the last 2 digits. This allows
easy visual grouping of puzzles by hunt, and an ordering over all puzzles.

1.3.2. Attributes

Next are three True/False puzzle properties, all of which default to False:

	“Is a metapuzzle”

	Controls which puzzles are marked as metapuzzles for the purpose of
scoring on the progress page.

	“Doesn’t Count”

	Controls whether or not the puzzle is discounted from scoring on the
progress page.

	“Is HTML puzzle”

	Controls whether the puzzle is more than just a PDF. If this box is
checked, the puzzle page will not display a PDF, and instead display a link to
the HTML content from the “Resource link” discussed below.

1.3.3. Content

Puzzle content is controlled by the following three links:

	“Link”

	The link to a publicly accessible PDF of the puzzle (if the puzzle is not an
HTML puzzle).

	“Resource link”

	The link to a publicly accessible ZIP file of the puzzle contents if the
puzzle is an HTML puzzle. The ZIP file must contain a file named “index.html”.
All links from the index file to other files in the ZIP file should be
relative links, as the base URL of the final contents is not guaranteed.

	“Solution link”

	The link to a publicly accessible PDF of the puzzle solution. If this field is
filled in, the solutions for each puzzle will be available on the puzzle page
after the hunt is over.

Tip

Linking an unzipped Dropbox folder for the resource link will also work.
Dropbox will automatically generate a zip file of the folder upon download.

1.3.4. Unlocking the Puzzle

Next is the matter of how the puzzle is unlocked. As of version 4.0, there are
now four options for puzzle unlocking:

	Solves Based Unlock:

	The puzzle will be unlocked once a certain number of puzzles from a chosen
subset are solved. Use the puzzle chooser to indicate which puzzles count
towards unlocking this puzzle. Then enter the number of puzzles required to
unlock this puzzle in the “Num required to unlock” field. Setting the number
of required puzzles to zero means that this puzzle will automatically be
unlocked when the hunt starts.

	Points Based Unlock:

	The puzzle will be unlocked once a team has earned enough points. Use the
“Points cost” field to specify how many points a team needs to unlock this
puzzle and the “Points value” to specify how many points solving this puzzle
gives a team. Points will also be given according to the rate specified by the
“Points per minute” field in the hunt object. Setting the “Points cost” field
to zero means that this puzzle will automatically be unlocked when the hunt
starts.

	Either (OR) Unlocking:

	Fill out both of the above field pairs and the puzzle will be unlocked when
either unlocking method’s criteria is met.

	Both (AND) Unlocking:

	Fill out both of the above field pairs and the puzzle will be unlocked when
both unlocking method’s criteria are met.

1.3.5. Auto-Response Objects

At the moment, whenever a user submits a correct answer, the server will
respond with “Correct!” and whenever the user submits a wrong answer the server
will respond with “Wrong Answer”. Often you will want additional customized
responses that can do things like tell the user how they are wrong or to tell
them to “Keep going!”.

To create automatic responses, use the “Responses” section at the bottom of the
puzzle creation form. The “Regex” field is a python-style regex checked against
the answer and the “Text” field is the text that will be returned to the team.
The regexes are not applied in any specific order, so answers that match more
than one regex will result in undefined behavior.

Tip

Response text can contain links using markdown style format:
[foo](https://link.to.foo)

1.3.6. Puzzle Wrapup

After filling out everything on the puzzle creation page, hit “Save and add
another” and continue to add puzzles until you have added all of the puzzles for
the hunt. This will take a while; my recommendations are to be patient and have
the unlocking graph on hand.

1.4. Create Prepuzzle Objects

As of version 3.3, the server now supports prepuzzles. A prepuzzle is a simpler
puzzle that exists outside of the normal set of puzzles for a hunt. Prepuzzles
are different in a number of ways:

	Prepuzzles do not require users to sign in

	Once published, prepuzzles are accessible before the hunt is open

	Prepuzzle submissions only support auto-response and do not show up on the
queue page

	Prepuzzles can be, but do not need to be tied to any specific hunt.

Like other above objects, to create a prepuzzle object, navigate to the
prepuzzle section of the admin pages and click the blue “+” icon in the upper
right.

Below is a quick summary of the fields, most of them are similar to other
fields above:

	Puzzle name:

	The name the puzzle is given and shown to users

	Released:

	Controls whether or not non-staff members can see the puzzle

	Hunt:

	Select which hunt this prepuzzle is associated with, leave blank to not
associate it with any hunt.

	Answer:

	The answer to the puzzle, not case sensitive.

	Template:

	See the “Prepuzzle Templating” section below

	Resource link:

	Allows the optional inclusion of static files for the prepuzzle, must be a
link to a publicly accessible ZIP file. See the “Prepuzzle Templating” section
for details on how to reference the files.

	Response string:

	The string that the server sends back to the prepuzzle page when the puzzle is
solved. In the simple example, this string is just displayed to the user, but
more complex templates could do anything they desire with this string.

	Puzzle URL:

	This isn’t really a field but rather an easy way to copy out the prepuzzle URL
because it isn’t currently accessible from anywhere on the site.

1.4.1. Prepuzzle Templating

As with the hunt “Template” field, everything typed into the “Template” form on
the prepuzzle editing page will be run through Django’s templating engine and
rendered as HTML.

Again, more information about Django’s templating language is available here:
https://docs.djangoproject.com/en/2.2/ref/templates/language/.

Unlike the hunt template, the only variable that is passed to this template is a
variable named “puzzle” containing the current prepuzzle object.

Just like the hunt template, it is recommended to use the below code to extend a
basic template, in this case the template name is prepuzzle.html.

{% extends "prepuzzle.html" %}

{% block content %}
 Your content here
{% endblock content %}

The following blocks are available to override in the prepuzzle template:

	{% block title %}

	This block controls what title is in the web browser tab. The default value
for this block is the puzzle name.

	{% block base_includes %}

	This block controls what content will be sourced/included before the standard
Bootstrap and Jquery imports. This block contains the navbar formatting and
the javascript helper functions discussed below, so it is not recommended to
override this block without making a call to {{ block.super }} inside to
include the existing contents.

	{% block includes %}

	This block controls what content will be sourced/included after the standard
Bootstrap and Jquery imports. This is for content that you want to use to
extend those libraries, or content that relies on those libraries.

The prepuzzle template has some other special functionality added:

	{% prepuzzle_static %}

	The {% prepuzzle_static %} tag allows access to the files from the
prepuzzle’s resource URL. It works just like the “hunt_static” tag.

	check_answer(callback, answer)

	The prepuzzle base template supplies a function called check_answer that
will deal with all of the server communication needed for answer checking. The
function takes a callback function and the user’s answer. The answer is then
submitted to the server, and the the response from the server is then passed
to the given callback function. The server response is a dictionary in the
following form: {is_correct: True, response: "response string"}, where
is_correct is a boolean indicating whether the answer matches the
prepuzzle’s answer and response is just a string that is either empty if
the response was not correct, or the prepuzzle’s given response string if the
answer was correct.

	{% include “prepuzzle_answerbox.html” %}

	If you use this include statement it will insert a no-hassle answer submission
box that includes a spot for users to enter their answer, a submission button
and will display the prepuzzle’s response text if the answer was correct.

Warning

Just like the hunt template, you may use completely custom HTML if
you want, but it is STRONGLY RECOMMENDED that you follow the instructions
below on how to inherit the base template to get nice features like the
header bar, common style sheets, Google analytics, and javascript helper
funcions.

1.5. Hunt Creation Wrapup

If you’ve been following along, you should now have created everything needed to
run a puzzlehunt. Head over to section 2: How to Run a Hunt for specific information on how to use the other parts of the
staff site.

2. How to Run a Hunt

So you want to run a puzzlehunt…

Here are all of the things you should need to know to run an already created
puzzlehunt:

2.1. Staff Pages

Below are descriptions of all of the custom staff pages, their features and how
to interact with them. All of these pages are accessible under the “Other Staff
Pages” header of the sidebar. The first 4 pages are critical to keep up during
the hunt, the latter 4 pages are more situational and will likely be more useful
before or after the hunt.

2.1.1. Progress Page

The progress page shows all the teams, and their progress in the hunt.

Tip

The table is pretty large, it is recommended to click the three lines
next to “Django administration” at the top to collapse the side navbar for
more room.

The main focus of the page is the large status table. The table lists puzzles
across the top, and teams down the side. Each cell in the table is the team’s
status on the corresponding puzzle, represented by one of 4 possible states:

[image: _images/progress_1.png]
From left to right:

	Green Box with a Time

	The team solved the puzzle at the specified time.

	Yellow/Orange/Red Box with a Time

	The team has unlocked the puzzle but has not yet solved the puzzle. The time
is the time of the team’s last submitted guess. The box will start yellow when
they first unlocked the puzzle and will slowly change to red over the course
of 4 hours. This can be helpful to see how long a team has been stuck on a
puzzle.

	Yellow/Orange/Red Box without a Time

	The team has unlocked the puzzle but has not yet solved the puzzle and has not
yet submitted a guess. The box follows the same yellow to red color scheme as
above.

	White box with an “Unlock” Button

	The team has not yet unlocked the puzzle. The button can be clicked to
manually unlock the puzzle for the team.

On the left side of the table there are 3 columns next to the team’s name. They
indicate the number of metapuzzles the team has solved, the number of normal
puzzles the team has solved and the last time that the team has solved a puzzle.
Above the table there is a checkbox alongside 3 dropdowns that allows you to
sort the table by these three columns instead of the default A-Z team name sort.

2.1.2. Queue Page

The queue page shows team’s puzzle answer guesses as they come in. The main
table on the page has one row for each submission. As the table header says, the
table shows the team, the puzzle, the submission, the submission time, and the
response. The row will be color coded for each submission: red for wrong and
green for correct.

The response column also has a “Fix” link next to each response. Clicking it
will bring up a form where you can edit the response to the submission. The
edited response will automatically be pushed to the team’s puzzle page. This can
be used to nudge a team in the correct direction if they are close or have
possibly just misspelled something.

Above the table there are two dropdown selectors and a “Filter” button. These
can be used to filter the shown submissions on the queue page by Team or Puzzle.

2.1.3. Chat Page

The chat page allows staff to chat with teams during the hunt. Every team in the
hunt has a button on the lefthand side that will bring up the chat box for that
team. The currently selected team will be shown in blue, and teams with unread
messages will be shown in red.

Attention

Due to the technical limitations of the server, only messages
that have arrived while the chat page is open will cause the teams’ name to
turn red, so try not to refresh the page too often after the hunt starts.
It’s also not a bad idea to click around the teams every so often to make
sure something hasn’t slipped through the cracks.

It is possible to check the checkbox at the bottom to “Make the message an
announcement”. This will send the message to all teams in the hunt.

2.1.4. Hints Page

The hints page allows you to see hints that teams have requested and respond to
them. Hints will appear one on top of another just like submissions on the queue
page. In addition to the puzzle and team filters like the ones on the queue
page, the hint page also has a “Filter by Status” dropdown that lets you view
only the answered or unanswered hints.

Each hint that comes in will start with a space for you to type a response and
hit submit. After hitting submit the response is sent to the team, but responses
can be further edited by clicking the “Edit Response” link at the bottom, at
which point the new response will be pushed to the team.

Finally, there is a button at the top left of the page titled “Show/Hide hint
counts”. Clicking this button will bring up a list of all of the teams and the
number of hints they currently have available to them. Clicking the plus and
minus buttons next to the number of available hints will give or take away
available hints from the team.

Note

There is a very small chance that the team will naturally gain a hint
in the same time period that you click to give them a hint. The counter will
tick up by two in that case, you probably didn’t double click.

2.1.5. Management Page

The first of the situational pages, the management page allows you to manage the
resources and the overall state of the hunt.

The top portion of the page is list of hunts, one hunt per row. Each row has 3
buttons:

	Set current

	This sets the selected hunt as the current hunt for all of the staff pages,
the site front page and everywhere else.

	Download Puzzles

	This downloads all PDFs and resources for all puzzles in the hunt.

	Download Resources

	This downloads all resources for the hunt template page.

Each row can also be expanded to reveal an individual download button for each
puzzle.

Underneath the “Hunt Downloads” section is a “Prepuzzle downloads” section which
allows the downloading of resources for any chosen prepuzzle.

Finally, there is a single button at the bottom of the page titled “Reset all
progress”. This button resets all team interaction that has happened so far with
a hunt, all submissions, responses, unlocks, solves, hints, and chat messages
are deleted. This is normally only used once between playtesting and the start
of the hunt.

2.1.6. Info Page

The info page lists information about teams that are signed up for a hunt and
the people on them. Along the left is a list of all of the teams separated into
3 categories: “Needs a room”, “Has a room”, and “Off Campus” with each team
having a text box next to their name with their current location. You can bulk
edit team locations, for example assigning rooms to “Need a room” teams, and
then click the “Update Locations” button at the bottom to save all the edits for
a certain section.

Note

Teams are listed in signup order with the first team to sign up at the
top so rooms can be assigned easily in sign up order.

Along the right side of the page is a statistic of how many people are
registered for the hunt for things like ordering food, followed by all listed
dietary restrictions of the registrants. Clicking any dietary restriction will
take you to the corresponding user so you can either contact the user for more
details or edit the restriction if the user has abused the field.

2.1.7. Email Page

The email page allows hunt staff to send an email out to all people registered
for the hunt. To send an email, simply enter a subject, a body and hit send
email.

If you want more customization or formatting than is available from the two
simple textboxes, you can click the button at the bottom of the page to show the
emails of all registered users to allow copy and pasting into your preferred
email client.

2.1.8. Charts Page

Finally there is the charts page. There are no actions to take on the charts
page, just a bunch of interesting charts. Most charts are pretty
self-explanatory, and offer very helpful mouse-hover information.

The last item on the charts page isn’t a chart at all, it is a table showing the
first team to solve a puzzle and when that first solve happened.

2.2. Preparing for the Hunt

2.2.1. Download Puzzles

Before anybody can start playing your hunt, you have to download the puzzles.
Sign into the staff part of the website located at {server URL}/staff and
head over to the “Management” page located under the “Other Staff Pages” sidebar
header. From there, click the “Puzzles” button next to the current hunt, which
will download all of the puzzles. It takes a few minutes, be patient.

That should just work. If it doesn’t, check your links and PDF accessibility and
try again. (If you really think it is a bug, feel free to submit an issue on the
github project)

If any individual puzzle fails to download or you just want to re-download a
single puzzle for some reason, remember that you can un-collapse the hunt and
click the download buttons for individual puzzles.

2.2.2. Playtesting

You probably want people to test your hunt before the actual event. This is easy
using the puzzlehunt server. Just have the team of playtesters sign up like
normal. Then navigate to the “Teams” page on the sidebar, find the team,
check the “Playtester” checkbox on their edit page, fill in the playtest start
and end dates and save the team. They will then have access to the puzzlehunt as
if it was open to them during the given dates.

Attention

Playtest start and end dates are a new required part of having a
team playtest as of version 4.0 due to the number of time based features now
available.

All interactions with the playtest team should be done as they normally
would be through the various staff pages described above. Things like the queue,
the progress page, chat, puzzle unlocking, and hints should all work. The only
feature currently not working for playtest teams is time released hints. If you
want playtest teams to get hints, you will have to award them manually from the
“hints” page.

Attention

Again, in a bigger orange box: Time released hints currently do
not trigger for playtest teams, you must manually award hints from the
“hints” page.

2.3. Running the Hunt

2.3.1. Pre-Hunt Checklist

Okay, the hunt is almost ready to happen, you’ve downloaded all the puzzles,
you’ve had people playtest the hunt, and now you’re ready to turn it over to the
public. Below is a short checklist of items to consider before the hunt starts.

	Before the hunt:

	
	[] Make sure the hunt start time is accurate

	[] Reset all progress from the management page

	[] Ensure all puzzles have working PDFs and images

	[] Ensure teams have been assigned rooms on the info page

2.3.2. During the Hunt

Hopefully your opening information session went well, the puzzles released
flawlessly and people are now solving puzzles. Time to sit back and watch/make
the magic happen. It is recommended to have the progress, queue, chat and
hints pages open.

With version 4.0, puzzles should now automatically release at the set hunt start
time, removing the need for the “release initial puzzles” button.

2.3.3. Hunt End

The hunt is nearing completion, hopefully everything went well and enough teams
have completed the hunt for it to end. If you think the hunt hasn’t run long
enough, be sure to update the hunt end time before you reach it.

Once the hunt end time is reached, all puzzles will be available for the public
and all hunt interfaces will update to indicate that the hunt is over.

2.4. Random Info and Common Issues

Teams can view their room assignments from the “team info” page: Let teams
know that if they forget or lose their room assignments (or you just don’t feel
like telling them) that they can view their room assignments by clicking “View
Registration” link on the front page.

What if I find a typo or other issue with a puzzle?: Simply fix the puzzle,
make sure the new version is uploaded to Dropbox and click the download button
for that puzzle from the management page.

What if I accidentally unlock a puzzle for a team I shouldn’t have?: You can
go to the “Unlocks” tab under the “Huntserver” section of the side navbar and
delete the unlock object for that team/puzzle combo. The team will lose access
to the puzzle.

3. Setup

Instructions on how to setup a machine to run this project.

3.1. Basic Setup Instructions

This project now uses docker-compose as it’s main form of setup. You can use the
following steps to get a sample server up and going

	Install [docker/docker-compose.](https://docs.docker.com/compose/install/)

	Clone this repository.

	Make a copy of sample.env named .env (yes, it starts with a dot).

	Edit the new .env file, filling in new values for the first block of
uncommented lines. Other lines can be safely ignored as they only provide
additional functionality.

	Run docker-compose up (possibly using sudo if needed)

	Once up, you’ll need to run the following commands to collect all the static
files (to be run any time after you alter the static files), to load in an
initial hunt to pacify some of the display logic (to be run only once), and
to create a new admin user (follow the prompts).

docker-compose exec app python3 /code/manage.py collectstatic --noinput
docker-compose exec app python3 /code/manage.py loaddata initial_hunt
docker-compose exec app python3 /code/manage.py createsuperuser

	You should now have the server running on a newly created VM, accessible via
(http://localhost). The repository you cloned has been
linked into the VM by docker, so any changes made to the repository on the
host system should show up automatically. (A docker-compose restart may
be needed for some changes to take effect)

3.1.1. Setup details

The basic instructions above bring up the following docker containers:

	
	db

	The postgres database with the settings specified in the .env file. Data
is retained across container restarts in docker/volumes/redis_data.

	
	redis

	A redis server for caching and task management. Data is stored in
docker/volumes/redis_data.

	
	app

	The Django application running using gunicorn on port 8000.

	
	huey

	A Huey consumer for scheduled tasks.

	
	web

	An apache server to proxy web requests to the “app” container and serve
the static files. By default, this container serves web requests using plain
HTTP over port 80. See the “Extra Setup Instructions” for details on
setting up SSL.

Note

There are also 2 volumes shared by a number of the containers that hold
static files and media files and will persist across docker restarts.

3.2. Extra Setup Instructions

In addition to the basic instructions above, there are a few additional setup
options available. These additional options are provided via “override files”
that override various parts of the docker compose logic. You can enable which
override files are being used by setting the COMPOSE_FILE variable in the
.env file. By default only the local_override.yml file is enabled.

3.2.1. local_override

By default, the “web” docker container only “exposes” port 80. The local
override file takes things one step further and maps the host port 80 to the
web container port 80. This is done via an override because docker compose
doesn’t support unmapping ports and the proxy_override settings need to map
the reverse proxy to host port 80.

3.2.2. shib_override

Enabling this override sets up shibboleth authentication on the apache server.
To use pre-existing shibboleth certificates, place sp-cert.pem and sp-key.pem
in docker/volumes/shib-certs. This override file
also uses LetsEncrypt to get a certificate for the site using the DOMAIN
and CONTACT_EMAIL settings from the .env file. SSL certs are stored in
docker/volumes/ssl-certs. Right now this is the only override that provides
SSL capabilities. In the future there will likely be an SSL_override file that
breaks out the LetsEncrypt functionality.

3.2.3. proxy_override

Enabling this override file sets up a reverse proxy using Traefik. This
functionality is in development and mostly untested. It currently only works
with shib_override. It also requires an already created docker network named
proxy-net

4. Basics

Despite it’s size, this project only has one main app named huntserver which
does nearly everything. This page is meant to outline basic low level
operational aspects and design choices of the server. This information is really
only helpful for people looking to help develop or modify the application. If
you’re just using the application, you can skip all this. (models and views too)

4.1. Design

The design of this project is somewhat divided into two parts, the staff
experience and the hunt participant experience.

Staff is anyone that has the staff attribute set in the admin page. These users
have access to the /staff/ area of the site; however, in order to access all
functions and access the /admin/ area of the site, the user must also be a
superuser as designated by Django.

4.2. Dynamic Content

Dynamic content is created by using a combination of the model-view controller
and the default Django templating engine. Both are extensively documented on
Django’s website. Both models and views used in this project are documented by
later pages.

4.3. Static Content

Puzzles should not be checked into the Github repository. They should exist on
some accessible online file source (we have used Dropboxin the past)
and will be downloaded and converted when the admin choses to do so.
Once downloaded, the puzzle files live in {PROJECT FOLDER}/media/puzzles/
and are named using the “puzzle id” field of the puzzle which is enforced to
be unique to each puzzle.

To protect users from being able to just go to
/media/puzzles/{Puzzle_id}.pdf and get puzzles, the server comes included
with a protected routing path utilizing X-Sendfile. The /protected/ URL will
only allow a user to access puzzle files if they have unlocked the puzzle.
To avoid hard-coding that path, you can use the variable
“settings.PROTECTED_URL” after importing the project settings.

It is a bit simplistic, but anything in the puzzles directory is permission
guarded by the set of hexadecimal characters before the ‘-’ or ‘.’ of the
filename. If the requesting user has access to the puzzle object with the
corresponding puzzle_id, then they will have access to that file.
You can use this to protect files other than just the puzzle PDFs and PNGs.

You should protect your /media/puzzles URL by only allowing access to
/media/puzzles/ from internal sources. The Apache configuration for this project
includes protection like this already.

4.4. Database

As noted in setup, the default database for this project is a Postgres database.
After setup, the database should never need to be modified by hand,
additions or deletions should be done from the online admin GUI or if absolutely
necessary, from the Django interactive shell.
Modifications to the table structure should only be done by modifying models.py
and using the automatically created migration files.

5. Models

	
class huntserver.models.Hint(*args, **kwargs)

	A class to represent a hint to a puzzle

	Parameters

	
	id (AutoField) – Id

	puzzle_id (ForeignKey to Puzzle) – The puzzle that this hint is related to

	team_id (ForeignKey to Team) – The team that requested the hint

	request (TextField) – The text of the request for the hint

	request_time (DateTimeField) – Hint request time

	response (TextField) – The text of the response to the hint request

	response_time (DateTimeField) – Hint response time

	last_modified_time (DateTimeField) – Last time of modification

	responder_id (ForeignKey to Person) – Staff member that has claimed the hint.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
answered

	A boolean indicating if the hint has been answered

	
status

	A string indicating the status of the hint

	
class huntserver.models.HintUnlockPlan(*args, **kwargs)

	A class to represent when Teams are given hints

	Parameters

	
	id (AutoField) – Id

	hunt_id (ForeignKey to Hunt) – The hunt that this hint unlock plan refers to

	unlock_type (CharField) – The type of hint unlock plan

	unlock_parameter (IntegerField) – Parameter (Time / Interval / Solves)

	num_triggered (IntegerField) – Number of times this Unlock Plan has given a hint

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
reset_plan()

	Resets the HintUnlockPlan

	
class huntserver.models.Hunt(*args, **kwargs)

	Base class for a hunt. Contains basic details about a puzzlehunt.

	Parameters

	
	id (AutoField) – Id

	hunt_name (CharField) – The name of the hunt as the public will see it

	hunt_number (IntegerField) – A number used internally for hunt sorting, must be unique

	team_size (IntegerField) – Team size

	start_date (DateTimeField) – The date/time at which a hunt will become visible to registered users

	end_date (DateTimeField) – The date/time at which a hunt will be archived and available to the public

	display_start_date (DateTimeField) – The start date/time displayed to users

	display_end_date (DateTimeField) – The end date/time displayed to users

	location (CharField) – Starting location of the puzzlehunt

	resource_file (FileField) – Hunt resources, MUST BE A ZIP FILE.

	is_current_hunt (BooleanField) – Is current hunt

	extra_data (CharField) – A misc. field for any extra data to be stored with the hunt.

	template (TextField) – The template string to be rendered to HTML on the hunt page

	hint_lockout (IntegerField) – The number of minutes before a hint can be used on a newly unlocked puzzle

	points_per_minute (IntegerField) – The number of points granted per minute during the hunt

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
clean(*args, **kwargs)

	Overrides the standard clean method to ensure that only one hunt is the current hunt

	
dummy_team

	The dummy team for the hunt

	
in_reg_lockdown

	A boolean indicating whether or not registration has locked for this hunt

	
is_day_of_hunt

	A boolean indicating whether or not today is the day of the hunt

	
is_locked

	A boolean indicating whether or not the hunt is locked

	
is_open

	A boolean indicating whether or not the hunt is open to registered participants

	
is_public

	A boolean indicating whether or not the hunt is open to the public

	
real_teams

	A queryset of all non-dummy teams in the hunt

	
save(*args, **kwargs)

	Overrides the standard save method to ensure that only one hunt is the current hunt

	
season

	Gets a season string from the hunt dates

	
team_from_user(user)

	Takes a user and a hunt and returns either the user’s team for that hunt or None

	
class huntserver.models.HuntAssetFile(*args, **kwargs)

	A class to represent an asset file for a puzzlehunt

	Parameters

	
	id (AutoField) – Id

	file (FileField) – File

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class huntserver.models.Message(*args, **kwargs)

	A class that represents a message sent using the chat functionality

	Parameters

	
	id (AutoField) – Id

	team_id (ForeignKey to Team) – The team that this message is being sent to/from

	is_response (BooleanField) – A boolean representing whether or not the message is from the staff

	text (CharField) – Message text

	time (DateTimeField) – Message send time

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class huntserver.models.OverwriteStorage(location=None, base_url=None, file_permissions_mode=None, directory_permissions_mode=None)

	A custom storage class that just overwrites existing files rather than erroring

	
get_available_name(name, max_length=None)

	Return a filename that’s free on the target storage system and
available for new content to be written to.

	
class huntserver.models.Person(*args, **kwargs)

	A class to associate more personal information with the default django auth user class

	Parameters

	
	id (AutoField) – Id

	user_id (OneToOneField to User) – The corresponding user to this person

	phone (CharField) – Person’s phone number, no particular formatting

	allergies (CharField) – Allergy information for the person

	comments (CharField) – Comments or other notes about the person

	is_shib_acct (BooleanField) – A boolean to indicate if the person uses shibboleth authentication for login

	teams (ManyToManyField) – Teams that the person is on

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class huntserver.models.Prepuzzle(*args, **kwargs)

	A class representing a pre-puzzle within a hunt

	Parameters

	
	id (AutoField) – Id

	puzzle_name (CharField) – The name of the puzzle as it will be seen by hunt participants

	released (BooleanField) – Released

	hunt_id (OneToOneField to Hunt) – The hunt that this puzzle is a part of, leave blank for no associated hunt.

	answer (CharField) – The answer to the puzzle, not case sensitive

	template (TextField) – The template string to be rendered to HTML on the hunt page

	resource_file (FileField) – Prepuzzle resources, MUST BE A ZIP FILE.

	response_string (TextField) – Data returned to the webpage for use upon solving.

	answer_validation_type (CharField) – The type of answer validation used for this puzzle.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
save(*args, **kwargs)

	Save the current instance. Override this in a subclass if you want to
control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist
that the “save” must be an SQL insert or update (or equivalent for
non-SQL backends), respectively. Normally, they should not be set.

	
class huntserver.models.Puzzle(*args, **kwargs)

	A class representing a puzzle within a hunt

	Parameters

	
	id (AutoField) – Id

	hunt_id (ForeignKey to Hunt) – The hunt that this puzzle is a part of

	puzzle_name (CharField) – The name of the puzzle as it will be seen by hunt participants

	puzzle_number (IntegerField) – The number of the puzzle within the hunt, for sorting purposes

	puzzle_id (CharField) – A 3-5 character hex string that uniquely identifies the puzzle

	answer (CharField) – The answer to the puzzle, not case sensitive

	puzzle_type (CharField) – The type of puzzle.

	puzzle_page_type (CharField) – The type of webpage for this puzzle.

	puzzle_file (FileField) – Puzzle file. MUST BE A PDF

	resource_file (FileField) – Puzzle resources, MUST BE A ZIP FILE.

	solution_is_webpage (BooleanField) – Is this solution an html webpage?

	solution_file (FileField) – Puzzle solution. MUST BE A PDF.

	solution_resource_file (FileField) – Puzzle solution resources, MUST BE A ZIP FILE.

	extra_data (CharField) – A misc. field for any extra data to be stored with the puzzle.

	answer_validation_type (CharField) – The type of answer validation used for this puzzle.

	unlock_type (CharField) – The type of puzzle unlocking scheme

	num_required_to_unlock (IntegerField) – Number of prerequisite puzzles that need to be solved to unlock this puzzle

	points_cost (IntegerField) – The number of points needed to unlock this puzzle.

	points_value (IntegerField) – The number of points this puzzle grants upon solving.

	unlocks (ManyToManyField) – Puzzles that this puzzle is a possible prerequisite for

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
clean()

	Hook for doing any extra model-wide validation after clean() has been
called on every field by self.clean_fields. Any ValidationError raised
by this method will not be associated with a particular field; it will
have a special-case association with the field defined by NON_FIELD_ERRORS.

	
save(*args, **kwargs)

	Save the current instance. Override this in a subclass if you want to
control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist
that the “save” must be an SQL insert or update (or equivalent for
non-SQL backends), respectively. Normally, they should not be set.

	
serialize_for_ajax()

	Serializes the ID, puzzle_number and puzzle_name fields for ajax transmission

	
class huntserver.models.PuzzleOverwriteStorage(location=None, base_url=None, file_permissions_mode=None, directory_permissions_mode=None)

	A custom storage class that just overwrites existing files rather than erroring

	
get_available_name(name, max_length=None)

	Return a filename that’s free on the target storage system and
available for new content to be written to.

	
url(name)

	Return an absolute URL where the file’s contents can be accessed
directly by a Web browser.

	
class huntserver.models.Response(*args, **kwargs)

	A class to represent an automated response regex

	Parameters

	
	id (AutoField) – Id

	puzzle_id (ForeignKey to Puzzle) – The puzzle that this automated response is related to

	regex (CharField) – The python-style regex that will be checked against the user’s response

	text (CharField) – The text to use in the submission response if the regex matched

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class huntserver.models.Solve(*args, **kwargs)

	A class that links a team and a puzzle to indicate that the team has solved the puzzle

	Parameters

	
	id (AutoField) – Id

	puzzle_id (ForeignKey to Puzzle) – The puzzle that this is a solve for

	team_id (ForeignKey to Team) – The team that this solve is from

	submission_id (ForeignKey to Submission) – The submission object that the team submitted to solve the puzzle

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
serialize_for_ajax()

	Serializes the puzzle, team, time, and status fields for ajax transmission

	
class huntserver.models.Submission(*args, **kwargs)

	A class representing a submission to a given puzzle from a given team

	Parameters

	
	id (AutoField) – Id

	team_id (ForeignKey to Team) – The team that made the submission

	submission_time (DateTimeField) – Submission time

	submission_text (CharField) – Submission text

	response_text (CharField) – Response to the given answer. Empty string indicates human response needed

	puzzle_id (ForeignKey to Puzzle) – The puzzle that this submission is in response to

	modified_date (DateTimeField) – Last date/time of response modification

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
convert_markdown_response

	The response with all markdown links converted to HTML links

	
create_solve()

	Creates a solve based on this submission

	
is_correct

	A boolean indicating if the submission given is exactly correct

	
respond()

	Takes the submission’s text and uses various methods to craft and populate a response.
If the response is correct, a solve is created and the correct puzzles are unlocked

	
save(*args, **kwargs)

	Overrides the default save function to update the modified date on save

	
serialize_for_ajax()

	Serializes the time, puzzle, team, and status fields for ajax transmission

	
update_response(text)

	Updates the response with the given text

	
class huntserver.models.Team(*args, **kwargs)

	A class representing a team within a hunt

	Parameters

	
	id (AutoField) – Id

	team_name (CharField) – The team name as it will be shown to hunt participants

	hunt_id (ForeignKey to Hunt) – The hunt that the team is a part of

	location (CharField) – The physical location that the team is solving at

	is_local (BooleanField) – Is this team from CMU (or your organization)

	join_code (CharField) – The 5 character random alphanumeric password needed for a user to join a team

	playtester (BooleanField) – A boolean to indicate if the team is a playtest team and will get early access

	playtest_start_date (DateTimeField) – The date/time at which a hunt will become to the playtesters

	playtest_end_date (DateTimeField) – The date/time at which a hunt will no longer be available to playtesters

	num_waiting_messages (IntegerField) – The number of unseen messages a team has waiting

	num_available_hints (IntegerField) – The number of hints the team has available to use

	num_unlock_points (IntegerField) – The number of points the team has earned

	solved (ManyToManyField) – The puzzles the team has solved

	unlocked (ManyToManyField) – The puzzles the team has unlocked

	unlockables (ManyToManyField) – The unlockables the team has earned

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
hints_open_for_puzzle(puzzle)

	Takes a puzzle and returns whether or not the team may use hints on the puzzle

	
is_normal_team

	A boolean indicating whether or not the team is a normal (non-playtester) team

	
is_playtester_team

	A boolean indicating whether or not the team is a playtesting team

	
playtest_happening

	A boolean indicating whether or not the team’s playtest slot is currently happening

	
playtest_over

	A boolean indicating whether or not the team’s playtest slot has passed

	
playtest_started

	A boolean indicating whether or not the team is currently allowed to be playtesting

	
reset()

	Resets/deletes all of the team’s progress

	
short_name

	Team name shortened to 30 characters for more consistent display

	
size

	The number of people on the team

	
unlock_hints()

	Gives teams the appropriate number of hints based on “Solves” HintUnlockPlans

	
unlock_puzzles()

	Unlocks all puzzles a team is currently supposed to have unlocked

	
class huntserver.models.Unlock(*args, **kwargs)

	A class that links a team and a puzzle to indicate that the team has unlocked the puzzle

	Parameters

	
	id (AutoField) – Id

	puzzle_id (ForeignKey to Puzzle) – The puzzle that this is an unlock for

	team_id (ForeignKey to Team) – The team that this unlocked puzzle is for

	time (DateTimeField) – The time this puzzle was unlocked for this team

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
serialize_for_ajax()

	Serializes the puzzle, team, and status fields for ajax transmission

	
class huntserver.models.Unlockable(*args, **kwargs)

	A class that represents an object to be unlocked after solving a puzzle

	Parameters

	
	id (AutoField) – Id

	puzzle_id (ForeignKey to Puzzle) – The puzzle that needs to be solved to unlock this object

	content_type (CharField) – The type of object that is to be unlocked, can be ‘IMG’, ‘PDF’, ‘TXT’, or ‘WEB’

	content (CharField) – The link to the content, files must be externally hosted.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

6. Views

6.1. Hunt Views

	
huntserver.hunt_views.protected_static(request, file_path)

	A view to serve protected static content. Does a permission check and if it passes,
the file is served via X-Sendfile.

	
huntserver.hunt_views.hunt(request, hunt_num)

	The main view to render hunt templates. Does various permission checks to determine the set
of puzzles to display and then renders the string in the hunt’s “template” field to HTML.

	
huntserver.hunt_views.current_hunt(request)

	A simple view that calls huntserver.hunt_views.hunt with the current hunt’s number.

	
huntserver.hunt_views.prepuzzle(request, puzzle_id)

	A view to handle answer submissions via POST and render the prepuzzle’s template.

	
huntserver.hunt_views.hunt_prepuzzle(request, puzzle_id)

	A simple view that locates the correct prepuzzle for a hunt and redirects there if it exists.

	
huntserver.hunt_views.current_prepuzzle(request, puzzle_id)

	A simple view that locates the correct prepuzzle for the current hunt and redirects to there.

	
huntserver.hunt_views.puzzle_view(request, puzzle_id)

	A view to handle answer submissions via POST, handle response update requests via AJAX, and
render the basic per-puzzle pages.

	
huntserver.hunt_views.puzzle_hint(request, puzzle_id)

	A view to handle hint requests via POST, handle response update requests via AJAX, and
render the basic puzzle-hint pages.

	
huntserver.hunt_views.chat(request)

	A view to handle message submissions via POST, handle message update requests via AJAX, and
render the hunt participant view of the chat.

	
huntserver.hunt_views.chat_status(request)

	A view ajax requests for the status of waiting chat messages for a team.

	
huntserver.hunt_views.unlockables(request)

	A view to render the unlockables page for hunt participants.

6.2. Info Views

	
huntserver.info_views.index(request)

	Main landing page view, mostly static with the exception of hunt info

	
huntserver.info_views.previous_hunts(request)

	A view to render the list of previous hunts, will show any hunt that is ‘public’

	
huntserver.info_views.registration(request)

	The view that handles team registration. Mostly deals with creating the team object from the
post request. The rendered page is nearly entirely static.

	
huntserver.info_views.user_profile(request)

	A view to handle user information update POST data and render the user information form.

6.3. Staff Views

	
huntserver.staff_views.queue(request, page_num)

	A view to handle queue response updates via POST, handle submission update requests via AJAX,
and render the queue page. Submissions are pre-rendered for standard and AJAX requests.

	
huntserver.staff_views.progress(request)

	A view to handle puzzle unlocks via POST, handle unlock/solve update requests via AJAX,
and render the progress page. Rendering the progress page is extremely data intensive and so
the view involves a good amount of pre-fetching.

	
huntserver.staff_views.charts(request)

	A view to render the charts page. Mostly just collecting and organizing data

	
huntserver.staff_views.admin_chat(request)

	A view to handle chat update requests via AJAX and render the staff chat
page. Chat messages are pre-rendered for both standard and AJAX requests.

	
huntserver.staff_views.hunt_management(request)

	A view to render the hunt management page

	
huntserver.staff_views.hunt_info(request)

	A view to render the hunt info page, which contains room and allergy information

	
huntserver.staff_views.control(request)

	A view to handle all of the different management actions from staff users via POST requests.
This view is not responsible for rendering any normal pages.

	
huntserver.staff_views.staff_hints_text(request)

	A view to handle hint response updates via POST, handle hint request update requests via AJAX,
and render the hint page. Hints are pre-rendered for standard and AJAX requests.

	
huntserver.staff_views.staff_hints_control(request)

	A view to handle the incrementing, decrementing, and updating the team hint counts on
the hints staff page.

	
huntserver.staff_views.emails(request)

	A view to send emails out to hunt participants upon receiving a valid post request as well as
rendering the staff email form page

	
huntserver.staff_views.lookup(request)

	A view to search for users/teams

6.4. Auth Views

	
huntserver.auth_views.login_selection(request)

	A mostly static view to render the login selection. Next url parameter is preserved.

	
huntserver.auth_views.create_account(request)

	A view to create user and person objects from valid user POST data, as well as render
the account creation form.

	
huntserver.auth_views.account_logout(request)

	A view to logout the user and hopefully also logout out the shibboleth system.

	
huntserver.auth_views.shib_login(request)

	A view that takes the attributes that the shibboleth server passes back and either logs in
or creates a new shibboleth user. The view then redirects the user back to where they were.

Index

 A
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | U

A

 	
 	account_logout() (in module huntserver.auth_views)

 	
 	admin_chat() (in module huntserver.staff_views)

 	answered (huntserver.models.Hint attribute)

C

 	
 	charts() (in module huntserver.staff_views)

 	chat() (in module huntserver.hunt_views)

 	chat_status() (in module huntserver.hunt_views)

 	clean() (huntserver.models.Hunt method)

 	(huntserver.models.Puzzle method)

 	
 	control() (in module huntserver.staff_views)

 	convert_markdown_response (huntserver.models.Submission attribute)

 	create_account() (in module huntserver.auth_views)

 	create_solve() (huntserver.models.Submission method)

 	current_hunt() (in module huntserver.hunt_views)

 	current_prepuzzle() (in module huntserver.hunt_views)

D

 	
 	dummy_team (huntserver.models.Hunt attribute)

E

 	
 	emails() (in module huntserver.staff_views)

G

 	
 	get_available_name() (huntserver.models.OverwriteStorage method)

 	(huntserver.models.PuzzleOverwriteStorage method)

H

 	
 	Hint (class in huntserver.models)

 	Hint.DoesNotExist

 	Hint.MultipleObjectsReturned

 	hints_open_for_puzzle() (huntserver.models.Team method)

 	HintUnlockPlan (class in huntserver.models)

 	HintUnlockPlan.DoesNotExist

 	HintUnlockPlan.MultipleObjectsReturned

 	Hunt (class in huntserver.models)

 	hunt() (in module huntserver.hunt_views)

 	
 	Hunt.DoesNotExist

 	Hunt.MultipleObjectsReturned

 	hunt_info() (in module huntserver.staff_views)

 	hunt_management() (in module huntserver.staff_views)

 	hunt_prepuzzle() (in module huntserver.hunt_views)

 	HuntAssetFile (class in huntserver.models)

 	HuntAssetFile.DoesNotExist

 	HuntAssetFile.MultipleObjectsReturned

 	huntserver.models (module)

I

 	
 	in_reg_lockdown (huntserver.models.Hunt attribute)

 	index() (in module huntserver.info_views)

 	is_correct (huntserver.models.Submission attribute)

 	is_day_of_hunt (huntserver.models.Hunt attribute)

 	
 	is_locked (huntserver.models.Hunt attribute)

 	is_normal_team (huntserver.models.Team attribute)

 	is_open (huntserver.models.Hunt attribute)

 	is_playtester_team (huntserver.models.Team attribute)

 	is_public (huntserver.models.Hunt attribute)

L

 	
 	login_selection() (in module huntserver.auth_views)

 	
 	lookup() (in module huntserver.staff_views)

M

 	
 	Message (class in huntserver.models)

 	
 	Message.DoesNotExist

 	Message.MultipleObjectsReturned

O

 	
 	OverwriteStorage (class in huntserver.models)

P

 	
 	Person (class in huntserver.models)

 	Person.DoesNotExist

 	Person.MultipleObjectsReturned

 	playtest_happening (huntserver.models.Team attribute)

 	playtest_over (huntserver.models.Team attribute)

 	playtest_started (huntserver.models.Team attribute)

 	Prepuzzle (class in huntserver.models)

 	prepuzzle() (in module huntserver.hunt_views)

 	Prepuzzle.DoesNotExist

 	
 	Prepuzzle.MultipleObjectsReturned

 	previous_hunts() (in module huntserver.info_views)

 	progress() (in module huntserver.staff_views)

 	protected_static() (in module huntserver.hunt_views)

 	Puzzle (class in huntserver.models)

 	Puzzle.DoesNotExist

 	Puzzle.MultipleObjectsReturned

 	puzzle_hint() (in module huntserver.hunt_views)

 	puzzle_view() (in module huntserver.hunt_views)

 	PuzzleOverwriteStorage (class in huntserver.models)

Q

 	
 	queue() (in module huntserver.staff_views)

R

 	
 	real_teams (huntserver.models.Hunt attribute)

 	registration() (in module huntserver.info_views)

 	reset() (huntserver.models.Team method)

 	reset_plan() (huntserver.models.HintUnlockPlan method)

 	
 	respond() (huntserver.models.Submission method)

 	Response (class in huntserver.models)

 	Response.DoesNotExist

 	Response.MultipleObjectsReturned

S

 	
 	save() (huntserver.models.Hunt method)

 	(huntserver.models.Prepuzzle method)

 	(huntserver.models.Puzzle method)

 	(huntserver.models.Submission method)

 	season (huntserver.models.Hunt attribute)

 	serialize_for_ajax() (huntserver.models.Puzzle method)

 	(huntserver.models.Solve method)

 	(huntserver.models.Submission method)

 	(huntserver.models.Unlock method)

 	shib_login() (in module huntserver.auth_views)

 	
 	short_name (huntserver.models.Team attribute)

 	size (huntserver.models.Team attribute)

 	Solve (class in huntserver.models)

 	Solve.DoesNotExist

 	Solve.MultipleObjectsReturned

 	staff_hints_control() (in module huntserver.staff_views)

 	staff_hints_text() (in module huntserver.staff_views)

 	status (huntserver.models.Hint attribute)

 	Submission (class in huntserver.models)

 	Submission.DoesNotExist

 	Submission.MultipleObjectsReturned

T

 	
 	Team (class in huntserver.models)

 	Team.DoesNotExist

 	
 	Team.MultipleObjectsReturned

 	team_from_user() (huntserver.models.Hunt method)

U

 	
 	Unlock (class in huntserver.models)

 	Unlock.DoesNotExist

 	Unlock.MultipleObjectsReturned

 	unlock_hints() (huntserver.models.Team method)

 	unlock_puzzles() (huntserver.models.Team method)

 	Unlockable (class in huntserver.models)

 	
 	Unlockable.DoesNotExist

 	Unlockable.MultipleObjectsReturned

 	unlockables() (in module huntserver.hunt_views)

 	update_response() (huntserver.models.Submission method)

 	url() (huntserver.models.PuzzleOverwriteStorage method)

 	user_profile() (in module huntserver.info_views)

Changelog

Version 4

v4.1.0

	New:

	
	Added in-page HTML puzzles

	Added lookup staff page

	Added autocomplete fields to admin

	Add github CI

	Moved to file uploads from URLS/downloads.

	Updates:

	
	Chat now has 2 min polling on all hunt pages

	Better chat notifications

	Redirect to login screen more often when permissions are wrong

	Removed individual unlock buttons from progress page

	Shibboleth works on traefik reverse proxy now

	Navbar rewrite

	Locust updates

	Deployment tweaks

	Bugfixes:

	
	Don’t ratelimit by team for past hunts

	Removed hint submission box when hunt is public

	Display end date for multi-day hunts

	Fix flatpages deployment bugs

	More hint bugfixes

v4.0.0

	New:

	
	Now requires Django 2.2 (and therefore requires Python 3)

	Added hints

	Staff can now set various rules for when to grant teams hint requests

	Once a team has a hint request, they can request a hint for a specific puzzle

	There are new pages for requesting, viewing, and answering hints

	Added the ability to unlock puzzles using points (time)

	Puzzles can now be unlocked through solves or points

	Points can be gotten by solving puzzles and/or over time (both settable via the admin interface)

	Information pages are now editable via the admin interface

	All “information pages” except for the homepage are now editable via the “info pages” admin section

	It is possible to add additional extra pages to the top navbar via the admin interface

	The download command output is now displayed when downloading puzzles and resources

	All of the main python files in the project are now PEP8/flake8 compliant

	Standard deployment is now all done through docker and docker compose

	Very large documentation update. Now has actually helpful docs for hunt creation and running

	Updates:

	
	Puzzle PDFs are now directly embedded in puzzle pages rather than using PNGs

	The progress page now sorts by last overall time rather than meta/non-meta time individually

	Almost all forms on both user and staff pages are now styled using bootstrap

	Many admin pages now support better searching, filtering and sorting of items

	Puzzle ID’s can now be up to 5 hexadecimal digits (up from 3)

	Teams can now register in the 2 days before the hunt but cannot request a room

	Updated text on index and hunt info pages to work for multi-day hunts

	Due to points/time puzzles, playtest teams now must have a start and end date/time

	The submission box now goes away after a team submits a correct answer

	Removed the “submissions after solve” chart on the admin “Charts” page

	Removed the hidden “depgraph” staff page

	Tweaked ratelimits, they are now more restrictive

	The test suite no longer requires internet access to run

	Removed reliance on django-nose, six, and PyPDF libraries

	Bugfixes:

	
	Informational logs no longer cause an error when presented with a unicode character

	Media path bug fixed

	Fixed logout redirect when shibboleth is disabled

	Various typo, readability, and small bug fixes

Version 3

v3.5.0

	New:

	
	Teams can now no longer change their name within 2 days of the hunt

	It is now possible to easily assign rooms to many teams from the info page

	Added basic informational logging to the huntserver app

	Updates:

	
	Nicer pages and messages displayed when a user doesn’t have access to an area

	Many code changes made to allow easier deployment of a generic version

	Single puzzle unlock now has a confirmation popup

	Added some look/feel features to staff chat to improve clarity

	Ratelimits have been stacked and tightened down to a more reasonable level

	Server now supports 5 digit puzzle IDs

	Bugfixes:

	
	Fixed ability to log into dev server using shibboleth

	Fixed bug that meant solutions could only be downloaded for the current hunt

v3.4.0

	New:

	
	Puzzles and hunts now have an additional field for generic data storage

	Puzzle solution PDFs can now be entered and displayed after the hunt ends

	Queue can now be filtered by team and/or puzzle

	Hunts can now have a “resources” link for additional static content

	Chat link in navbar now has a “number of unread messages” badge

	Ctrl/Cmd-S now will now save the current mode in the django admin

	Updates:

	
	The announcement checkbox in staff chat now automatically get unchecked after sending

	The “Current Hunt” link now has time sensitive behavior for before/during hunts

	Due to the addition of hunt resources, hunt asset files are now deprecated

	Updated wording to Previous/Current/Next hunt on the index page based on date

	The hunt management page has been redesigned for easier usage

	Most staff pages now have been updated to better utilize bootstrap

	Bugfixes:

	
	Fixed progress page bug which update initial solve time if solved again

	Fixed sorting bug on the progress page regarding meta-solve-time

	Fixed a bug where the queue would roll items to the next page when not needed

	Fixed a number of small CSS errors and typos

v3.3.0

	New:

	
	Python 3 compatibility

	Now requires Django 1.11 (Start of Django 2.0 compatibility)

	New testing and coverage framework, including integration with travis-ci/coveralls

	New admin layout that supports new Django version

	Added “Info” page for staff showing team locations and allergies

	New load testing framework

	Added support for “HTML puzzles” that are just a webpage rather than a PDF

	Added support for customizable prepuzzles.

	Updates:

	
	Setup script is now idempotent

	Added information to previous hunt page

	Many minor fixes to reduce server load

	Hunt start and end dates are now controllable independently from display dates

	Progress page now sortable by success metrics

	Bugfixes:

	
	First message no longer gets lost when sent by staff

	Teams now automatically get deleted if all users leave before the hunt starts

	Past hunts now viewable when not logged in

v3.2.0

	New:

	
	Common punctuation (_-;:+,.!?) is now automatically stripped from puzzle answer submissions

	All string fields now support unicode characters

	Puzzle answer submissions are now ratelimited to 10 submissions per minute

	New charts and other info on charts page

	Puzzle pages now show a solve count

	Teams can now update their name before the hunt starts from the team management page

	Updates:

	
	Staff chat now allows staff to initiate conversations with teams

	Chat now automatically scrolls to the bottom upon loading and new messages

	Minor style changes including navbar and team name rendering

v3.1.1

	Updates:

	
	Updated documentation to include instructions for hunt asset files

v3.1.0

	New:

	
	Users can now update their profile information including name, email, phone, and food preferences

	Teams can now update their own location from the registration page

	Automatic submission responses now support markdown style links

	Progress page now has a button to unlock a specific puzzle for all teams

	New 404 and 500 error pages to match website’s style

	Updates:

	
	Removed unlockables tab from hunt header due to disuse

	Progress and Queue page now have sleeker more compact look

	Hunt info page now pulls max team size from database

	“Contact us” page now has more contact info

	Unused /staff URLs will now route to /admin URLs

	Bugfixes:

	
	Fixed bug where team names could be made entirely of whitespace characters

	Removed dummy teams from all normal hunt interactions

	Fixed bug where parts of old hunt headers lead to the current hunt pages

	Fixed bug where staff announcements triggered new message alert for other staff members.

	Fixed bug in 3.0.3 relating to the use of “is not None” in info_views

v3.0.3

	New:

	
	Documentation of models, views, configuration, and how to run the server.

v3.0.2

	Bugfixes:

	
	Fixed bug where chat would throw an error if the hunt did not have any messages yet

	Fixed bug where sometimes staff chat button remapping script wouldn’t load

v3.0.1

	Bugfixes:

	
	Fixed bug where staff had to have puzzle unlocked to view puzzle

v3.0.0

	New:

	
	Staff interaction with server via SSH is no longer necessary for normal hunt creation

	The template for each puzzlehunt is now editable from an web-based inline editor

	The editor is located on the admin page for each hunt

	The editor supports syntax highlighting for HTML and CSS

	HTML files in the template folder of the form hunt#.html are now useless

	Hunt-specific web assets such as fonts and images can now be uploaded from admin interface

	Assets are stored in the /media/hunt/assets/ directory

	Hunt specific files should no longer be included in the repository

Version 2

v2.7.2

	Updates:

	
	Added password reset link to login page

v2.7.1

	Bugfixes:

	
	Fixed issue with custom tabular template that prevented editing puzzle details

	Various typo fixes on the login selection page

v2.7.0

	New:

	
	Progress page now shows last submission time for unsolved team/puzzle squares

	Staff chat now supports announcements to all teams

	Added 3 new charts to the staff charts page

v2.6.4

	Bugfixes:

	
	Fixed bug where previous hunt page would also show future hunts

v2.6.3

	Updates:

	
	Offsite and dummy teams are no longer shown in charts

v2.6.2

	Bugfixes:

	
	Fixed bug where looking at an open hunt while not on a team would cause an error

v2.6.1

	Updates:

	
	Changed staff header contents to be relevant to website content

v2.6.0

	New:

	
	Added simplistic rendering of unlocking structure graph

	Added ability to reset password via email for local accounts

	Added ability to send email to all hunt participants directly from the email page

	Added ability to update local PDF of individual puzzles

	Added ability to edit puzzle responses from the respective puzzle page

	Updates:

	
	Puzzle unlocking GUI has been reversed, now selects which puzzles unlock current puzzle

	Regex for responding to answers is now case-insensitive

	New CSS style for staff pages using updated bootstrap theme

	Default action for incorrect responses is now the “Canned Response” instead of nothing

	Bugfixes:

	
	Current hunt link no longer changes destination depending on current page

	Patched several security vulnerabilities related to account registration and Shibboleth

v2.5.2

	Bugfixes:

	
	Removed bad staff footer

	Fixed incorrect contact information

v2.5.1

	Updates:

	
	Updated “Not Released” page style to match the rest of the pages

	Bugfixes:

	
	Fixed bug where correct answers on old hunts were styled as wrong answers

	Fixed bug where puzzle page would “lose” a submission response

v2.5.0

	New:

	
	All pages now support google analytics tracking

v2.4.1

	Bugfixes:

	
	Fixed URL for University of Pittsburgh IDP

v2.4.0

	New:

	
	Staff queue now is paginated for faster load times

	Submissions may now be computationally responded to using regexes

	Old hunts are now preserved properly and playable

	Server now supports “Playtesting” teams who get early access to puzzles

	AJAX requests now only fire when the page is active to reduce web traffic

	Correct answer submissions may now have response texts other than “Correct!”

	Support for running simultaneous development server(s)

	Identifying header when on development server

	Django debug toolbar present when on development server

	Updates:

	
	Setting the current hunt is now done on the control page instead of the settings file

	Updated look of staff chat, switched to side tabs for usability

	Server now uses PyPDF2 to get PDF length to lessen reliance on outside tools

	AJAX code updated to support model based data generation

	Moved all in-page javascript to separate files

	Removed all Redis websocket code from codebase

	All effectful web requests are now done in POST requests

	Bugfixes:

	
	Fixed bug where staff members had to be on a team for the queue to update

	Fixed bug where local clock skew would cause the queue to miss updates

	Fixed bug where AJAX would fail if there weren’t any submissions yet

	Shibboleth will now default to local login when not configured

	Removed unnessecary CSRF token from certain GET requests

v2.3.0

	New:

	
	Moved from websocket/subscription model to AJAX/polling model for efficiency and simplicity

v2.2.0

	New:

	
	Resources page now contains helpful links

	Users are now able to leave a team from the registration page

	Users are now able to see their room assignment from the registration page

	Updates:

	
	Configuration files are now in a separate directory

	Apache is now configured to use uWSGI emperor mode

	Improved registration page

	Static files are now served using Apache and X-Sendfile for efficiency

	Bugfixes:

	
	Username is now hidden when the navbar is too small to display it properly

	Various bug fixes related to properly creating Shibboleth accounts

v2.1.0

	New:

	
	Server now supports Shibboleth authentication for users

v2.0.1

	Bugfixes:

	
	Fixed improper unicode method on Person object

	Visiting a hunt’s page while not on a team no longer results in an error

v2.0.0

	New:

	
	Server now is one account per person instead of one account per team

	Registration is completely re-written

	Websocket code for most pages is re-written (relied on user)

	Old databases are incompatible and must be regenerated

	Migration files restarted at 0001

	No automatic way to migrate data from previous scheme

	Added new informational pages

	New home page with organization details!

	Other information pages such as “Contact Us” and “Resources”

	Updates:

	
	ADMIN_ACCTS variable no longer used anywhere and removed

	Page load time improvements to Progress and Queue staff pages

Version 1

v1.3.0

	Updates:

	
	All pages now styled with bootstrap

	All staff/admin views now rely on the “Staff” label instead of ADMIN_ACCTS

v1.1.1

	Bugfixes:

	
	Re-fixed bug where users are able to submit answer when hunt is not open

	Fixed XSS vulnerability in chat updating

	Fixed broken link to goat.mp3

	Fixed unnecessary response of full HTML page for ajax requests.

v1.1.0

	New:

	
	Added text to registration page to assist in registration

	Added Emails page for easy access to hunter’s emails

	Location is now a field when registering

	Users are now able to view an existing registration with password

	Updates:

	
	Static files are now collected after downloading puzzles

v1.0.1

	Bugfixes:

	
	Fixed issue with chat websockets not sending properly

v1.0.0

	New:

	
	Added documentation!

	Updates:

	
	Phone number is no longer a required field in registration

	Puzzles are now automatically unlocked for newly registered teams

Pre-release

v0.6.0

	New:

	
	Teams may now have a size limit

	Static file access is now protected by unlock structure

	Updates:

	
	Answer box now clears upon submission

	Puzzle image quality improved

	Code is better commented

	Important private settings have been moved to an untracked file

	PDFs are now served from the local downloaded copy

	Bugfixes:

	
	Puzzles may no longer be solved when the hunt is not open

v0.5.0

	New:

	
	Added Hunt Control page with actions to reset or release all puzzles

	Added chat functionality to allow hunters to chat with staff

	Added images of puzzles on each puzzle page

	Added ability to unlock objects upon a puzzle solve

	Added Unlockables page to view unlocked objects

	Added Registration page to allow self registration of teams

	Updates:

	
	Responses are now changeable after submitting

	Bugfixes:

	
	Progress page no longer displays UTC times

	Fixed XSS vulnerability in Queue page

	Users can now only be on 1 team

v0.4.0

	New:

	
	Added “Access Denied” page and appropriate logic

	Added “Staleness coloring” on progress page

	Added Team/Puzzle status chart to charts page

	Updates:

	
	Puzzle ID’s are now unique

	Phone number no longer required for Team creation

	Updated style of header

v0.3.0

	New:

	
	Added Progress page to show all teams’ progress

	Added support for live updating on Progress page

	Updates:

	
	Styled built-in admin pages to look like staff pages

v0.2.0

	New:

	
	Added Login, Landing, Puzzle and Queue pages

	Added answer submission on puzzle page and answer viewing on queue page

	Added websocket functionality to allow Puzzle and Queue pages to update live

v0.1.0

	New:

	
	Django webserver with base models and views

	Deployment configuration for nginx and mySQL

 _static/ajax-loader.gif

_images/main_1.png
Huntserver administration Hunt~ | ©

A/ Huntserver

* S Apps

Hints Apps Q Action

Hunts Huntserver Hints + 7 Q
Hunts. + 7 Q
Messages + 7 Q
Persons + 7 Q
Prepuzzles + 7 Q
Puzzles + 7 Q
Responses + Q
Solves + /s Q
Submissions + /s Q
Teams + /s Q
Unlockables + 7 Q
Unlocks + 7 Q
Users + /s Q

_images/progress_1.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/hunt_1.png
HUNTSERVER

Hints

Messages

Persons

Responses

Solves

Submissions.

Teams.

Unlockables

Unlocks

Users

OTHER STAFF PAGES

= Add hunt

A | Huntserver / Hunts / Add hunt

Hunt name:

The name of the hunt as the public will see it

Hunt number:

A number used intemally for hunt sorting, must be unique

Is current hunt

Team size:

Location:

Starting location of the puzzlehunt

Start date:
Date: Time:

Today 88 Now @
The dateftime at which a hunt wil
become visible to registered users

End date:
Date: Time:

Display start date:
Date: Time:

Today 88 Now|@

The start dateftime displayed to
users

Display end date:
Date: Time:

Hunt~ | O

- -

+ Save and add
another

Saveand
continue editing

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Puzzle Hunt CMU’s Server documentation!

 		
 How to Create a Hunt

 		
 Prepare the Hunt Content

 		
 Create the Hunt Object

 		
 Editing the Hunt Template

 		
 Hint Unlock Plans

 		
 Hunt object creation wrap up

 		
 Create Puzzle Objects

 		
 The Basics

 		
 Attributes

 		
 Content

 		
 Unlocking the Puzzle

 		
 Auto-Response Objects

 		
 Puzzle Wrapup

 		
 Create Prepuzzle Objects

 		
 Prepuzzle Templating

 		
 Hunt Creation Wrapup

 		
 How to Run a Hunt

 		
 Staff Pages

 		
 Progress Page

 		
 Queue Page

 		
 Chat Page

 		
 Hints Page

 		
 Management Page

 		
 Info Page

 		
 Email Page

 		
 Charts Page

 		
 Preparing for the Hunt

 		
 Download Puzzles

 		
 Playtesting

 		
 Running the Hunt

 		
 Pre-Hunt Checklist

 		
 During the Hunt

 		
 Hunt End

 		
 Random Info and Common Issues

 		
 Setup

 		
 Basic Setup Instructions

 		
 Setup details

 		
 Extra Setup Instructions

 		
 local_override

 		
 shib_override

 		
 proxy_override

 		
 Basics

 		
 Design

 		
 Dynamic Content

 		
 Static Content

 		
 Database

 		
 Models

 		
 Views

 		
 Hunt Views

 		
 Info Views

 		
 Staff Views

 		
 Auth Views

_static/plus.png

_static/minus.png

_static/phcmulong_bw.png
HI/IIIIIIIII 77

Puzzle
Hunt W

AN

_static/up-pressed.png

_static/up.png

